## Is Democracy Possible?

### Nir Oren n.oren @abdn.ac.uk

University of Aberdeen

March 30, 2012

Nir Oren (Univ. Aberdeen)

Democracy

March 30, 2012 1 / 30

A system of government by the whole population or all the eligible members of a state, typically through elected representatives. A system of government by the whole population or all the eligible members of a state, typically through elected representatives.

- More generally, we're talking about a specific form of group decision making —
  - Deciding whether a building project should take place
  - Deciding whether an amendment to a law should pass
  - Choosing what/where to eat with a group of friends

### • Why democracy is a good/bad idea

# The process



# The process



・ロト ・日本・ ・ ヨト

- voting fraud carousel voting, intimidation
  - statistical methods can sometimes be used to detect anomalies.
- counting fraud particularly in automated voting machines
  - Verifying that the voting program works as desired; having source code is not enough.
  - Verifying the integrity of the data; encryption is not enough
  - If someone has physical access to the voting machine, it's virtually impossible to secure.

- voting fraud carousel voting, intimidation
  - statistical methods can sometimes be used to detect anomalies.
- counting fraud particularly in automated voting machines
  - Verifying that the voting program works as desired; having source code is not enough.
  - Verifying the integrity of the data; encryption is not enough
  - If someone has physical access to the voting machine, it's virtually impossible to secure.
- But what about the voting system itself?

• Ensure "good" decisions are made

### • Ensure "good" decisions are made

Democracy is the recurrent suspicion that more than half of the people are right more than half the time.

– E.B. White

- Ensure "good" decisions are made
- Reflect the will of the people

- Ensure "good" decisions are made
- Reflect the will of the people
  - Which people? All of them?
  - What if 51% of people really don't like the other 49%?

- The purpose of voting is to obtain a *collective* preference (or *social choice*) from a set of individual preferences.
- A preference is some sort of "goodness" ordering over outcomes

 $pizza >_{nir} curry >_{nir} stir fry$ 

pizza ><sub>frank</sub> stir fry ><sub>frank</sub> curry

- The purpose of voting is to obtain a *collective* preference (or *social choice*) from a set of individual preferences.
- A preference is some sort of "goodness" ordering over outcomes

 $pizza >_{nir} curry >_{nir} stir fry$ 

pizza ><sub>frank</sub> stir fry ><sub>frank</sub> curry

#### • 7 people are trying to decide whether to eat Pizza or Chinese.

- 3 voters *P* > *C* > *I*
- 2 voters *C* > *P* > *I*
- 2 voters *I* > *C* > *P*
- Chinese will win with 4 votes to 3.

- 7 people are trying to decide whether to eat Pizza or Chinese.
  - 3 voters *P* > *C* > *I*
  - 2 voters *C* > *P* > *I*
  - 2 voters *I* > *C* > *P*
- Chinese will win with 4 votes to 3.
- If the choice of indian is introduced, then pizza will win and chinese will come second.
- We've introduced an "irrelevant" alternative (as it still comes last) which has reversed the outcome.
- This feels "unfair"

The following properties of voting systems are generally considered desirable:

- *U* : Anyone can have any sort of consistent preference anyone can vote for anything. This is known as the condition of *universal domain*.
- P: If everyone voting prefers X to Y, then in the result, X should be ranked more highly than Y. This is the *weak Pareto principle*.
- D : There is no individual such that no matter what anyone else prefers, they can decide on the outcome. This is the *non-dictatorship principle*.

The following properties of voting systems are generally considered desirable:

- *I* : If a voting system combines two objects a, b so that  $a \ge b$  for a set of individuals who have different orderings (e.g.  $a \ge_1 b, b \ge_2 a, b \ge_3 a$ ), then as long as these different orderings hold, the voting system will always result in  $a \ge b$ .
- In other words, *a*'s relation to *c* (and *c*'s to *b*) doesn't matter. Example

$$a \ge b$$
 if  $(acbd, dbac)$ 

Then

- *U* : Anyone can have any sort of consistent preference anyone can vote for anything. This is known as the condition of *universal domain*.
- P: If everyone voting prefers X to Y, then in the result, X should be ranked more highly than Y. This is the *weak Pareto principle*.
- D : There is no individual such that no matter what anyone else prefers, they can decide on the outcome. This is the *non-dictatorship principle*.
- *I* : If a voting system combines two objects a, b so that  $a \ge b$  for a set of individuals who have different orderings (e.g.

 $a \ge_1 b, b \ge_2 a, b \ge_3 a$ ), then as long as these different orderings hold, the voting system will result in  $a \ge b$ . This is the *independence of irrelevant alternatives principle*.

Can we find a voting system that satisfies all of these properties?

- *U* : Anyone can have any sort of consistent preference anyone can vote for anything. This is known as the condition of *universal domain*.
- P: If everyone voting prefers X to Y, then in the result, X should be ranked more highly than Y. This is the *weak Pareto principle*.
- D : There is no individual such that no matter what anyone else prefers, they can decide on the outcome. This is the *non-dictatorship principle*.
- *I* : If a voting system combines two objects a, b so that  $a \ge b$  for a set of individuals who have different orderings (e.g.

 $a \ge_1 b, b \ge_2 a, b \ge_3 a$ ), then as long as these different orderings hold, the voting system will result in  $a \ge b$ . This is the *independence of irrelevant alternatives principle*.

# Can we find a voting system that satisfies all of these properties? NO!

(日) (周) (日) (日)

# Given a finite number of individuals (even 2!), and at least three possibilities, there is no way to create a voting system for which conditions U, P, D and I hold.

Let's assume we have n people voting over possibilities  $a, b, c, \ldots$ 

- Let's assume that for all individuals rank *a* the highest, and *b* the lowest.
- Since *a* is preferred over every other outcome, by *P* it must be ranked most highly.
- Similarly, *b* is ranked as the least preferred outcome.

| $R_1$ |       | $R_{m-1}$ | R <sub>m</sub> | $R_{m+1}$ |     | R <sub>n</sub> | outcome |  |
|-------|-------|-----------|----------------|-----------|-----|----------------|---------|--|
| а     |       | а         | а              | а         |     | а              | а       |  |
| •     |       | :         | •              | •         |     | ·              | •       |  |
| Ь     | • • • | Ь         | Ь              | Ь         | ••• | Ь              | Ь       |  |

March 30, 2012 13 / 30

| $R_1$ |       | $R_{m-1}$ | R <sub>m</sub> | $R_{m+1}$ |     | R <sub>n</sub> | outcome |
|-------|-------|-----------|----------------|-----------|-----|----------------|---------|
| а     |       | а         | а              | а         |     | а              | а       |
| ;     |       | ;         | ;              | •         |     |                |         |
| b     | • • • | b         | b              | b         | ••• | b              | b       |

Now let's lift b up for  $R_1$  by 1 position

< A

æ

| $R_1$ |       | $R_{m-1}$ | $R_m$ | $R_{m+1}$ |       | R <sub>n</sub> | outcome |
|-------|-------|-----------|-------|-----------|-------|----------------|---------|
| а     |       | а         | а     | а         |       | а              | а       |
| •     | •••   | •         | •     | •         | •••   | •              | •       |
| Ь     | • • • |           | •     |           | • • • | •              |         |
|       |       | Ь         | Ь     | Ь         |       | Ь              |         |

| $R_1$ |       | $R_{m-1}$ | $R_m$ | $R_{m+1}$ |       | R <sub>n</sub> | outcome |
|-------|-------|-----------|-------|-----------|-------|----------------|---------|
| а     |       | а         | а     | а         |       | а              | а       |
| ÷     | • • • | •         | •     | •         | • • • |                | •       |
| b     |       |           |       | •         |       | •              |         |
|       |       | Ь         | Ь     | Ь         |       | Ь              | •       |

Repeat until b is  $R_1$ 's most preferred outcome.

æ

| $R_1$ | <br>$R_{m-1}$ | R <sub>m</sub> | $R_{m+1}$ | <br>R <sub>n</sub> | outcome |
|-------|---------------|----------------|-----------|--------------------|---------|
| Ь     | <br>а         | а              | а         | <br>а              | а       |
| а     |               | •              |           |                    |         |
| •     |               | •              |           |                    | •       |
|       | <br>Ь         | Ь              | Ь         | <br>Ь              | •       |

| $R_1$ | <br>$R_{m-1}$ | R <sub>m</sub> | $R_{m+1}$ |     | R <sub>n</sub> | outcome |
|-------|---------------|----------------|-----------|-----|----------------|---------|
| Ь     | <br>а         | а              | а         | ••• | а              | а       |
| а     |               |                |           |     |                |         |
|       |               |                |           |     | •              |         |
|       | <br>Ь         | Ь              | Ь         |     | Ь              | •       |

- Now since we've only actually reordered *b* and *a*, by *I*, *a* must be first or second in the outcomes.
- Let's assume it remains at the top.
- So we repeatedly raise *b* for the 2nd person, 3rd person etc, until *b* gets to the top.
- Let's say this happens for person m
- Note that if we end up doing this for all *R*'s, by *P* we're guaranteed to have *b* as the most preferred outcome, so this is always possible.

| $R_1$ | <br>$R_{m-1}$ | R <sub>m</sub> | $R_{m+1}$ | <br>R <sub>n</sub> | outcome |
|-------|---------------|----------------|-----------|--------------------|---------|
| Ь     | <br>Ь         | а              | а         | <br>а              | а       |
| а     | <br>а         | Ь              |           |                    |         |
|       |               |                |           |                    |         |
| •     |               |                | Ь         | <br>Ь              | •       |

Again, since we're only dealing with a and b, by l this is the only outcome that should be affected.

| $R_1$ | <br>$R_{m-1}$ | $R_m$ | $R_{m+1}$ |     | R <sub>n</sub> | outcome |
|-------|---------------|-------|-----------|-----|----------------|---------|
| Ь     | <br>Ь         | Ь     | а         |     | а              | Ь       |
| а     | <br>а         | а     |           | ••• |                | а       |
| •     |               |       |           |     |                | •       |
| •     | <br>•         |       | Ь         |     | Ь              | •       |

Again, since we're only dealing with a and b, by I this is the only outcome that should be affected.

| $R_1$                    |                  | $R_{m-1}$                  | $R_m$                    | $R_{m+1}$                               |                  | R <sub>n</sub>      | outcome           |
|--------------------------|------------------|----------------------------|--------------------------|-----------------------------------------|------------------|---------------------|-------------------|
| Ь                        |                  | Ь                          | а                        | а                                       |                  | а                   | а                 |
| а                        |                  | а                          | Ь                        | •                                       |                  |                     |                   |
| •                        | • • •            |                            | •                        | •                                       | • • •            | •                   |                   |
| •                        |                  |                            | •                        | Ь                                       | •••              | Ь                   |                   |
|                          |                  |                            |                          |                                         |                  |                     |                   |
| $R_1$                    |                  | $R_{m-1}$                  | R <sub>m</sub>           | $R_{m+1}$                               |                  | R <sub>n</sub>      | outcome           |
| $\frac{R_1}{b}$          |                  | $\frac{R_{m-1}}{b}$        | R <sub>m</sub><br>b      | <i>R</i> <sub><i>m</i>+1</sub> <i>a</i> |                  | R <sub>n</sub><br>a | outcome<br>b      |
| R <sub>1</sub><br>b<br>a | · · · ·          | R <sub>m-1</sub><br>b<br>a | R <sub>m</sub><br>b<br>a | <i>R<sub>m+1</sub></i><br><i>a</i>      | · · · ·<br>· · · | R <sub>n</sub><br>a | outcome<br>b<br>a |
| R <sub>1</sub><br>b<br>a | · · · ·<br>· · · | R <sub>m-1</sub><br>b<br>a | R <sub>m</sub><br>b<br>a | <i>R<sub>m+1</sub></i><br><i>a</i>      | ····<br>···      | R <sub>n</sub><br>a | outcome<br>b<br>a |

• Let's move *a* to the bottom for all *i* < *m* and to the 2nd most preferred position for all *i* > *m*.

| $R_1$             |                  | $R_{m-1}$                          | $R_m$                    | $R_{m+1}$                      |             | R <sub>n</sub>          | outcome      |
|-------------------|------------------|------------------------------------|--------------------------|--------------------------------|-------------|-------------------------|--------------|
| b                 |                  | Ь                                  | а                        | •                              |             | •                       | •            |
|                   |                  | •                                  | Ь                        | •                              |             |                         | •            |
|                   |                  |                                    |                          | а                              |             | а                       | •            |
| а                 |                  | а                                  |                          | Ь                              |             | Ь                       | •            |
|                   |                  |                                    |                          |                                |             |                         |              |
| $R_1$             |                  | $R_{m-1}$                          | <i>R</i> <sub>m</sub>    | $R_{m+1}$                      |             | R <sub>n</sub>          | outcome      |
| $\frac{R_1}{b}$   |                  | $\frac{R_{m-1}}{b}$                | R <sub>m</sub><br>b      | <i>R</i> <sub><i>m</i>+1</sub> |             | <i>R</i> <sub>n</sub>   | outcome<br>b |
| $\frac{R_1}{b}$ . | · · · ·          | <i>R<sub>m-1</sub></i><br><i>b</i> | R <sub>m</sub><br>b<br>a | <i>R<sub>m+1</sub></i>         | · · · ·     | <i>R</i> <sub>n</sub> . | outcome<br>b |
|                   | · · · ·<br>· · · | <i>R<sub>m-1</sub></i><br><i>b</i> | R <sub>m</sub><br>b<br>a | R <sub>m+1</sub><br>a          | ····<br>··· | R <sub>n</sub><br>a     | outcome<br>b |

- Let's move *a* to the bottom for all *i* < *m* and to the 2nd most preferred position for all *i* > *m*.
- For the highlighted case, *b* hasn't moved with regards to anything else and must therefore be ranked most highly due to *I*.
- Since b was only exchanged with a in the highlighted case, it cannot change ranking with anything other than a. So in the first situation, b must rank highest apart from possibly a.

Nir Oren (Univ. Aberdeen)

Democracy

17 / 30

### Back to case 1

| $R_1$                       |                  | $R_{m-1}$                          | R <sub>m</sub>           | $R_{m+1}$                |                  | R <sub>n</sub>        | outcome |
|-----------------------------|------------------|------------------------------------|--------------------------|--------------------------|------------------|-----------------------|---------|
| Ь                           |                  | Ь                                  | а                        | а                        |                  | а                     | а       |
| а                           |                  | а                                  | Ь                        | •                        |                  |                       | •       |
| •                           |                  |                                    |                          |                          |                  |                       |         |
| •                           |                  |                                    |                          | Ь                        |                  | Ь                     |         |
|                             |                  |                                    |                          |                          |                  |                       |         |
| $R_1$                       |                  | $R_{m-1}$                          | R <sub>m</sub>           | $R_{m+1}$                |                  | R <sub>n</sub>        | outcome |
| $\frac{R_1}{b}$             |                  | $\frac{R_{m-1}}{b}$                | R <sub>m</sub><br>a      | <i>R<sub>m+1</sub></i> . |                  | <i>R</i> <sub>n</sub> | outcome |
| $\frac{R_1}{b}$             | · · · ·<br>· · · | $\frac{R_{m-1}}{b}$                | R <sub>m</sub><br>a<br>b | <i>R<sub>m+1</sub></i>   | · · · ·<br>· · · | <i>R<sub>n</sub></i>  | outcome |
| $     \frac{R_1}{b}     . $ | ····<br>···      | <i>R<sub>m-1</sub></i><br><i>b</i> | R <sub>m</sub><br>a<br>b | R <sub>m+1</sub><br>a    | ····<br>···      | R <sub>n</sub><br>a   | outcome |

- So we know that in the case at the bottom, *b* must rank highest apart from possibly *a*.
- Comparing, note that *a* and *b* haven't moved w.r.t each other.
- So since *b* must rank highest in the bottom case apart form *a*, *a* must rank highest in the bottom case.

Nir Oren (Univ. Aberdeen)

Democracy

### Back to case 1

| $R_1$                       |                  | $R_{m-1}$                          | R <sub>m</sub>           | $R_{m+1}$                |                  | R <sub>n</sub>        | outcome      |
|-----------------------------|------------------|------------------------------------|--------------------------|--------------------------|------------------|-----------------------|--------------|
| Ь                           |                  | Ь                                  | а                        | а                        |                  | а                     | а            |
| а                           |                  | а                                  | Ь                        | •                        |                  |                       | •            |
| •                           |                  |                                    |                          |                          |                  |                       |              |
| •                           |                  |                                    |                          | Ь                        |                  | Ь                     |              |
|                             |                  |                                    |                          |                          |                  |                       |              |
| $R_1$                       |                  | $R_{m-1}$                          | R <sub>m</sub>           | $R_{m+1}$                |                  | R <sub>n</sub>        | outcome      |
| $\frac{R_1}{b}$             |                  | $\frac{R_{m-1}}{b}$                | R <sub>m</sub><br>a      | <i>R<sub>m+1</sub></i> . |                  | <i>R</i> <sub>n</sub> | outcome<br>a |
| $\frac{R_1}{b}$             | · · · ·<br>· · · | $\frac{R_{m-1}}{b}$ .              | R <sub>m</sub><br>a<br>b | <i>R<sub>m+1</sub></i>   | · · · ·<br>· · · | <i>R<sub>n</sub></i>  | outcome<br>a |
| $     \frac{R_1}{b}     . $ | ····<br>···      | <i>R<sub>m-1</sub></i><br><i>b</i> | R <sub>m</sub><br>a<br>b | R <sub>m+1</sub><br>a    | ····<br>···      | R <sub>n</sub><br>a   | outcome<br>a |

- So we know that in the case at the bottom, *b* must rank highest apart from possibly *a*.
- Comparing, note that *a* and *b* haven't moved w.r.t each other.
- So since b must rank highest in the bottom case apart form a, a must rank highest in the bottom case.

Nir Oren (Univ. Aberdeen)

# We've shown that if a is ranked lowest for i < m and second lowest for m > i and highest for i = m, a will be highest in the vote.

| $R_1$ | <br>$R_{m-1}$ | $R_m$ | $R_{m+1}$ | <br>$R_n$ | outcome |
|-------|---------------|-------|-----------|-----------|---------|
| •     | <br>•         | а     | •         |           | а       |
| С     | <br>С         | С     | С         | <br>С     |         |
| Ь     | <br>Ь         | Ь     | а         | <br>а     | •       |
| а     | <br>а         |       | Ь         | <br>Ь     | •       |

- Let's switch the rankings of a and b for i > m.
- Can *b* move above *a* in the outcomes?

Image: A matrix

| $R_1$ | <br>$R_{m-1}$ | $R_m$ | $R_{m+1}$ | <br>$R_n$ | outcome |
|-------|---------------|-------|-----------|-----------|---------|
| •     | <br>•         | а     |           |           | а       |
| С     | <br>С         | С     | С         | <br>с     |         |
| Ь     | <br>Ь         | Ь     | Ь         | <br>Ь     | •       |
| а     | <br>а         |       | а         | <br>а     | •       |

- Let's switch the rankings of a and b for i > m.
- Can b move above a in the outcomes?
- No as c > b so by P c has to rank above b.
- Therefore *a* remains at the top, and *c* ranks above *b*.

# Final Step!

| $R_1$ | <br>$R_{m-1}$ | $R_m$ | $R_{m+1}$ | <br>R <sub>n</sub> | outcome |
|-------|---------------|-------|-----------|--------------------|---------|
| С     | <br>С         | а     | С         | <br>С              | а       |
|       |               | С     |           |                    | •       |
| Ь     | <br>Ь         | Ь     | Ь         | <br>b              | С       |
| а     | <br>а         |       | а         | <br>а              | Ь       |

- Create an arbitrary set of profiles, except for  $R_m$  for who a > b.
- I means that c can't have an effect on the rankings of a and b.
- The rankings between a and c are as in the previous step (i.e. c > a except for R<sub>m</sub>) by I a must remain preferred over c.
- c is above b so by P it is preferred.
- So a > c and c > b so a > b whenever  $a >_{R_m} b$
- In other words,  $R_m$  is a dictator for choice a.

• Could we have different dictators for different choices (e.g. one for *a*, a different one for *b* etc)?

- Could we have different dictators for different choices (e.g. one for *a*, a different one for *b* etc)?
- No; as what would happen when both dictators try exert their power?
- We have used I, P and U to show that D cannot hold.
- No voting system can satisfy all of the desired conditions simultaneously!

- So no voting system is perfect.
- But we could lift one of the requirements.

- In some situations, it is possible to constrain the types of preferences individuals can have.
- For example, selecting the volume of music for a party.
- It's been shown that in such situations, majority rule voting works.

- Not requiring *P* is not as useful; it has been shown that either a dictator still exists, or an *inverse dictator*.
- For an inverse dictator, if  $a >_i b$  then b > a.

- If we lift *I*, then as seen in FPTP, voting for an "irrelevant" alternative can affect the outcome.
- This means that a voter could change the winner by voting for someone that they do not really want to vote for.
- In other words, *strategic voting* is a necessary feature of any voting system which ignores *I*. This include FPTP, AV, Borda and most other "widely used" voting systems.

- Strategic voting means a voter must consider all the other voter's choices when making their choice.
- "If a votes x then I should vote y. But if a thinks I'll vote y, they'll vote z, in which case I should vote x, ..."
- Voting becomes a *game theoretic* problem.
- Solving game theoretic problems can be hard:
  - Strategic voting could mean an unexpected (and unwanted) outcome.
  - But computing an optimal voting strategy could be very difficult, disincentivising such behaviour.

- Note that we only spoke about 3 or more alternatives.
- What if we've only got 2? Then Arrow's theorem doesn't hold.
- So we could vote on 2 issues.
- Why not always limit to 2 alternatives (e.g. if there are 4 alternatives, pit 2 of them against each other in two "preliminary rounds") and then have the winners fight it out?
- The order in which the alternatives are given alters the final outcome.

• The voting process is vulnerable at various points

- Social, political and technical vulnerabilities occur when running elections.
- Mathematical vulnerabilities appear when trying to create a fair voting mechanism.
- The latter result indicates that strategic voting is always possible.
- But what if, instead of trying to find a perfect voting mechanism, voters could change their preferences?
  - Perhaps access to better explanations about outcomes of decisions could align people's preferences?
  - If so, increasing debate, participative democracy etc, might be the best way to make democracy work.